Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.299
Filtrar
1.
Ren Fail ; 46(1): 2338933, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38616177

RESUMO

Thioredoxin-interacting protein (TXNIP) is an important regulatory protein for thioredoxin (TRX) that elicits the generation of reactive oxygen species (ROS) by inhibiting the redox function of TRX. Abundant evidence suggests that TXNIP is involved in the fibrotic process of diabetic kidney disease (DKD). However, the potential mechanism of TXNIP in DKD is not yet well understood. In this study, we found that TXNIP knockout suppressed renal fibrosis and activation of mammalian target of rapamycin complex 1 (mTORC1) and restored transcription factor EB (TFEB) and autophagy activation in diabetic kidneys. Simultaneously, TXNIP interference inhibited epithelial-to-mesenchymal transformation (EMT), collagen I and fibronectin expression, and mTORC1 activation, increased TFEB nuclear translocation, and promoted autophagy restoration in HK-2 cells exposed to high glucose (HG). Rapamycin, an inhibitor of mTORC1, increased TFEB nuclear translocation and autophagy in HK-2 cells under HG conditions. Moreover, the TFEB activators, curcumin analog C1 and trehalose, effectively restored HG-induced autophagy, and abrogated HG-induced EMT and collagen I and fibronectin expression in HK-2 cells. Taken together, these findings suggest that TXNIP deficiency ameliorates renal fibrosis by regulating mTORC1/TFEB-mediated autophagy in diabetic kidney diseases.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/etiologia , Fibronectinas , Autofagia , Colágeno Tipo I , Alvo Mecanístico do Complexo 1 de Rapamicina , Tiorredoxinas , Fibrose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas de Transporte/genética
2.
Skin Res Technol ; 30(4): e13681, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584576

RESUMO

OBJECTIVE: Safe, effective, and biocompatible minimally invasive procedures with the potential to stimulate collagen production have been made to recover dermal thickness and skin quality. The main of this animal model experiment was to observe the effect of poly-L-lactic acid (PLLA) and polydioxanone (PDO) biostimulators in collagen I and III after hypodermal injection. METHODOLOGY: Sixteen adult female rats (Wistar) were randomized into four groups and had dorsal treatment with: G1: hypodermic subcision (HS) only; G2: HS and PLLA hypodermic injection (HI), G3: HS and PDO HI; G4: Control, with no treatment. RESULTS: In histochemical, it was observed hypodermal and dermal tissue in more organized thickness in G3 and in G4 when compared to G1 and G2. There was few difference in G1 compared to G4. The tissue of G2 showed irregularities in the arrangement of collagen fibers, less defined structure and lower distribution of type I collagen compared to the other groups. There is a greater tendency for the proportions of type III collagen among tissues treated with both biostimulators (G2 and G3). PLLA and PDO had relatively similar percentages of collagen when compared to G4. The amount of type I collagen was higher in tissues treated with subcision, while type III collagen was higher in tissues treated with both biostimulators. CONCLUSION: G3 showed better performance in collagen production, although small, when compared with G2.


Assuntos
Colágeno Tipo I , Polidioxanona , Poliésteres , Ratos , Feminino , Animais , Polidioxanona/farmacologia , Colágeno Tipo III , Ratos Wistar , Colágeno
3.
Biochem Biophys Res Commun ; 709: 149833, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38574608

RESUMO

In people living with diabetes, impaired wound healing is a major concern as the formation of ulcerated wounds can drastically reduce both the effectiveness of the healing process and the quality of life of the patient. The healing of dermal wounds in particular involves a patient's fibroblasts building up a strong extracellular matrix of mostly collagen I and collagen III fibers, which the cells of diabetic patients struggle to do. Extracellular matrix stiffness, and growth substrate stiffness in general, have already been shown to have a significant effect on the growth and development of already existent cells, and in diabetic dermal fibroblasts, morphological and physiological characteristics associated with the healing process appear to be altered from their healthy state. In this study we utilized a PDMS surface with a stiffness comparable to a wound environment (16 kPa) and a softer surface (0.2 kPa) to study the effects on diabetic and normal fibroblasts. We found diabetic fibroblast morphology became more fibroblast like when placed on the softer surfaces. This was demonstrated by a 15.6% decrease in the aspect ratio and a 16.4% increase in the circularity. The presence of the stress fibers was decreased by 19.4% in diabetic fibroblasts when placed on a softer surface. The proliferation rate of the diabetic fibroblasts was unaffected by the change in stiffness, but the metabolic activity greatly decreased (76%) on the softer surface. The results suggest that the softer surface may have a therapeutic effect on diabetic fibroblast metabolic activity. Further studies could focus on investigating this relationship and utilize it in tunable biomaterials to facilitate and accelerate the healing process for diabetic wounds.


Assuntos
Diabetes Mellitus Tipo 2 , Qualidade de Vida , Humanos , Fibroblastos/metabolismo , Colágeno Tipo I/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fenótipo
4.
Biochem Biophys Res Commun ; 710: 149884, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38598901

RESUMO

In the clinical setting, chemotherapy is the most widely used antitumor treatment, however, chemotherapy resistance significantly limits its efficacy. Reduced drug influx is a key mechanism of chemoresistance, and inhibition of the complexity of the tumor microenvironment (TME) may improve chemotherapy drug influx and therapeutic efficiency. In the current study, we identified that the major extracellular matrix protein collagen I is more highly expressed in lung cancer tissues than adjacent tissues in patients with lung cancer. Furthermore, Kaplan-Meier analysis suggested that COL1A1 expression was negatively correlated with the survival time of patients with lung cancer. Our previous study demonstrated that miR-29a inhibited collagen I expression in lung fibroblasts. Here, we investigated the effect of miR-29a on collagen I expression and the cellular behavior of lung cancer cells. Our results suggest that transfection with miR-29a could prevent Lewis lung carcinoma (LLC) migration by downregulating collagen I expression, but did not affect the proliferation, apoptosis, and cell cycle of LLC cells. In a 3D tumoroid model, we demonstrated that miR-29a transfection significantly increased cisplatin (CDDP) permeation and CDDP-induced cell death. Furthermore, neutral lipid emulsion-based miR-29a delivery improved the therapeutic effect of cisplatin in an LLC spontaneous tumor model in vivo. In summary, this study shows that targeting collagen I expression in the TME contributes to chemotherapy drug influx and improves therapeutic efficacy in lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Cisplatino/farmacologia , MicroRNAs/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Permeabilidade , Proliferação de Células , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Mol Biol Rep ; 51(1): 529, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637422

RESUMO

BACKGROUND: TGF-ß1 and SMAD3 are particularly pathogenic in the progression of renal fibrosis. AIM: This study aimed to evaluate the kidney protective potentials of silymarin (SM) and exosomes of mesenchymal stem cells against the nephrotoxin thioacetamide (TAA) in rats. METHODS: 32 female rats were randomly assigned into four groups: the control group, the TAA group, the TAA + SM group, and the TAA + Exosomes group. The kidney homogenates from all groups were examined for expression levels of TGF-ß receptors I and II using real-time PCR, expression levels of collagen type I and CTGF proteins using ELISA, and the expression levels of nuclear SMAD2/3/4, cytoplasmic SMAD2/3, and cytoplasmic SMAD4 proteins using the western blot technique. RESULTS: Compared to the control group, the injection of TAA resulted in a significant increase in serum levels of urea and creatinine, gene expression levels of TßRI and TßRII, protein expression levels of both collagen I and CTGF proteins, cytoplasmic SMAD2/3 complex, and nuclear SMAD2/3/4 (p-value < 0.0001), with significantly decreased levels of the co-SMAD partner, SMAD4 (p-value < 0.0001). Those effects were reversed considerably in both treatment groups, with the superiority of the exosomal treatment regarding the SMAD proteins and the expression levels of the TßRI gene, collagen I, and CTGF proteins returning to near-control values (p-value > 0.05). CONCLUSION: Using in vitro and in vivo experimental approaches, the research discovered a reno-protective role of silymarin and exosomes of BM-MSCs after thioacetamide-induced renal fibrosis in rats, with the advantage of exosomes.


Assuntos
Exossomos , Nefropatias , Silimarina , Ratos , Feminino , Animais , Fator de Crescimento Transformador beta/metabolismo , Tioacetamida/toxicidade , Tioacetamida/metabolismo , Silimarina/farmacologia , Exossomos/metabolismo , Fibrose , Fator de Crescimento Transformador beta1/metabolismo , Nefropatias/patologia , Colágeno Tipo I/metabolismo , Proteínas Smad/metabolismo
6.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611703

RESUMO

In cutaneous wound healing, an overproduction of inflammatory chemokines and bacterial infections impedes the process. Hydrogels can maintain a physiologically moist microenvironment, absorb chemokines, prevent bacterial infection, inhibit bacterial reproduction, and facilitate wound healing at a wound site. The development of hydrogels provides a novel treatment strategy for the entire wound repair process. Here, a series of Fructus Ligustri Lucidi polysaccharide extracts loaded with polyvinyl alcohol (PVA) and pectin hydrogels were successfully fabricated through the freeze-thaw method. A hydrogel containing a 1% mixing weight ratio of FLL-E (named PVA-P-FLL-E1) demonstrated excellent physicochemical properties such as swellability, water retention, degradability, porosity, 00drug release, transparency, and adhesive strength. Notably, this hydrogel exhibited minimal cytotoxicity. Moreover, the crosslinked hydrogel, PVA-P-FLL-E1, displayed multifunctional attributes, including significant antibacterial properties, earlier re-epithelialization, production of few inflammatory cells, the formation of collagen fibers, deposition of collagen I, and faster remodeling of the ECM. Consequently, the PVA-P-FLL-E1 hydrogel stands out as a promising wound dressing due to its superior formulation and enhanced healing effects in wound care.


Assuntos
Ligustrum , Pectinas , Pectinas/farmacologia , Álcool de Polivinil , Polissacarídeos/farmacologia , Cicatrização , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Colágeno Tipo I , Quimiocinas , Hidrogéis
7.
Elife ; 122024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564479

RESUMO

Circulating lactate is a fuel source for liver metabolism but may exacerbate metabolic diseases such as nonalcoholic steatohepatitis (NASH). Indeed, haploinsufficiency of lactate transporter monocarboxylate transporter 1 (MCT1) in mice reportedly promotes resistance to hepatic steatosis and inflammation. Here, we used adeno-associated virus (AAV) vectors to deliver thyroxin binding globulin (TBG)-Cre or lecithin-retinol acyltransferase (Lrat)-Cre to MCT1fl/fl mice on a choline-deficient, high-fat NASH diet to deplete hepatocyte or stellate cell MCT1, respectively. Stellate cell MCT1KO (AAV-Lrat-Cre) attenuated liver type 1 collagen protein expression and caused a downward trend in trichrome staining. MCT1 depletion in cultured human LX2 stellate cells also diminished collagen 1 protein expression. Tetra-ethylenglycol-cholesterol (Chol)-conjugated siRNAs, which enter all hepatic cell types, and hepatocyte-selective tri-N-acetyl galactosamine (GN)-conjugated siRNAs were then used to evaluate MCT1 function in a genetically obese NASH mouse model. MCT1 silencing by Chol-siRNA decreased liver collagen 1 levels, while hepatocyte-selective MCT1 depletion by AAV-TBG-Cre or by GN-siRNA unexpectedly increased collagen 1 and total fibrosis without effect on triglyceride accumulation. These findings demonstrate that stellate cell lactate transporter MCT1 significantly contributes to liver fibrosis through increased collagen 1 protein expression in vitro and in vivo, while hepatocyte MCT1 appears not to be an attractive therapeutic target for NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Células Estreladas do Fígado , Fígado/metabolismo , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Camundongos Obesos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , RNA Interferente Pequeno/metabolismo
8.
Front Endocrinol (Lausanne) ; 15: 1344971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501098

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence and affects approximately one-third of adults, owing to high-fat dietary habits and a sedentary lifestyle. The role of hypoxia-inducible factor 2α (HIF-2α) in NAFLD progression remains unknown. This study aimed to investigate the effects of chronic hypoxia on NAFLD progression by examining the role of hypoxia-inducible factor 2α (HIF-2α) activation and that of hepatic stellate cell (HSC)-derived myofibroblasts through glutaminolysis. We hypothesised that hypoxia exacerbates NAFLD by promoting HIF-2α upregulation and inhibiting phosphorylated yes-associated protein (YAP), and that increasing YAP expression enhances HSC-derived myofibroblasts. We studied patients with NAFLD living at high altitudes, as well as animal models and cultured cells. The results revealed significant increases in HSC-derived myofibroblasts and collagen accumulation caused by HIF-2α and YAP upregulation, both in patients and in a mouse model for hypoxia and NAFLD. HIF-2α and HIF-2α-dependent YAP downregulation reduced HSC activation and myofibroblast levels in persistent chronic hypoxia. Furthermore, hypoxia-induced HIF-2α upregulation promoted YAP and inhibited YAP phosphorylation, leading to glutaminase 1 (GLS1), SLC38A1, α-SMA, and Collagen-1 overexpression. Additionally, hypoxia restored mitochondrial adenosine triphosphate production and reactive oxygen species (ROS) overproduction. Thus, chronic hypoxia-induced HIF-2α activation enhances fibrosis and NAFLD progression by restoring mitochondrial ROS production and glutaminase-1-induced glutaminolysis, which is mediated through the inhibition of YAP phosphorylation and increased YAP nuclear translocation. In summary, HIF-2α plays a pivotal role in NAFLD progression during chronic hypoxia.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Animais , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Colágeno Tipo I/metabolismo , Glutaminase/metabolismo , Glutamina/metabolismo , Células Estreladas do Fígado/metabolismo , Hipóxia/metabolismo , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Sinalização YAP
9.
Front Immunol ; 15: 1363962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515758

RESUMO

Introduction: Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer associated with an immunosuppressive environment. Neutrophil extracellular traps (NETs) were initially described in the context of infection but have more recently been implicated in contributing to the tolerogenic immune response in PDAC. Thus, NETs are an attractive target for new therapeutic strategies. Group A Streptococcus (GAS) has developed defensive strategies to inhibit NETs. Methods: In the present work, we propose utilizing intra-tumoral GAS injection to stimulate anti-tumor activity by inhibiting cancer-promoting NETs. Mice harboring Panc02 or KPC subcutaneous tumors injected with three different M-type GAS strains. Tumors and spleens were harvested at the endpoint of the experiments to assess bacterial colonization and systemic spread, while sera were analyzed for humoral responses toward the streptococcal antigens, especially the M1 and Scl1 proteins. Role of the streptococcal collagen-like protein 1 (Scl1) in anti-PDAC activity was assessed in vivo after intratumoral injection with M1 GAS wild-type, an isogenic mutant strain devoid of Scl1, or a complemented mutant strain with restored scl1 expression. In addition, recombinant Scl1 proteins were tested for NET inhibition using in vitro and ex vivo assays assessing NET production and myeloperoxidase activity. Results: Injection of three different M-type GAS strains reduced subcutaneous pancreatic tumor volume compared to control in two different murine PDAC models. Limitation of tumor growth was dependent on Scl1, as isogenic mutant strain devoid of Scl1 did not reduce tumor size. We further show that Scl1 plays a role in localizing GAS to the tumor site, thereby limiting the systemic spread of bacteria and off-target effects. While mice did elicit a humoral immune response to GAS antigens, tested sera were weakly immunogenic toward Scl1 antigen following intra-tumoral treatment with Scl1-expressing GAS. M1 GAS inhibited NET formation when co-cultured with neutrophils while Scl1-devoid mutant strain did not. Recombinant Scl1 protein inhibited NETs ex vivo in a dose-dependent manner by suppressing myeloperoxidase activity. Discussion: Altogether, we demonstrate that intra-tumoral GAS injections reduce PDAC growth, which is facilitated by Scl1, in part through inhibition of cancer promoting NETs. This work offers a novel strategy by which NETs can be targeted through Scl1 protein and potentiates its use as a cancer therapeutic.


Assuntos
Adenocarcinoma , Armadilhas Extracelulares , Neoplasias Pancreáticas , Animais , Camundongos , Proteínas de Bactérias , Armadilhas Extracelulares/metabolismo , Colágeno/metabolismo , Antígenos de Bactérias/metabolismo , Colágeno Tipo I/metabolismo , Streptococcus pyogenes , Peroxidase/metabolismo
10.
Int J Biol Macromol ; 265(Pt 1): 130843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484819

RESUMO

BACKGROUND: Stem cell exosomes are beneficial in accelerating wound repair. However, the therapeutic function is limited due to its rapid clearance in vivo. To improve the functionality of exosomes in cutaneous wound healing, a novel hydrogel was designed and fabricated by recombinant human collagen I and carboxymethyl chitosan loaded with exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs), named as the rhCol I/CMC-Exos hydrogel. METHODS: Exosomes were extracted from hUCMSCs and were characterizated by TEM (Transmission Electron Microscopy), and biomarker detection. The rhCol I hydrogel, rhCol I/carboxymethyl chitosan (rhCol I/CMC) hydrogel and the rhCol I/CMC-Exos hydrogel composites were cross-linked by genipin. These materials were assessed and compared for their physical characteristics, including cross-sectional morphology, porosity, pore distribution, and hydrophilicity. Cell biocompatibility on biomaterials was investigated using scanning electron microscopy and CFDA staining, as well as assessed in vivo through histological examination of major organs in mice. Effects of the hydrogel composite on wound healing were further evaluated by using the full-thickness skin defect mice model. RESULTS: Successful extraction of hUCMSCs-derived exosomes was confirmed by TEM,Western Blotting and flow cytometry. The synthesized rhCol I/CMC-Exos hydrogel composite exhibited cytocompatibility and promoted cell growth in vitro. The rhCol I/CMC-Exos hydrogel showed sustained release of exosomes. In the mice full skin-defects model, the rhCol I/CMC-Exos-treated group showed superior wound healing efficiency, with 15 % faster wound closure compared to controls. Histological examinations revealed thicker dermis formation and more balanced collagen deposition in wounds treated with rhCol I/CMC-Exos hydrogel. Mechanistically, the application of rhCol I/CMC-Exos hydrogel increased fibroblasts proliferation, alleviated inflammation responses as well as promoted angiogenesis, thereby was beneficial in promoting skin wound healing and regeneration. CONCLUSION: Our study, for the first time, introduced recombinant human Collagen I in fabricating a novel hydrogel loaded with hUCMSCs-derived exosomes, which effectively promoted skin wound closure and regeneration, demonstrating a great potential in severe skin wound healing treatment.


Assuntos
Quitosana , Exossomos , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Hidrogéis/farmacologia , Cicatrização , Quitosana/farmacologia , Estudos Transversais , Colágeno/farmacologia , Modelos Animais de Doenças , Colágeno Tipo I/farmacologia
12.
Cell Signal ; 118: 111135, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479555

RESUMO

BACKGROUND: Pancreatic fibrosis is one of the most important pathological features of chronic pancreatitis (CP) and pancreatic stellate cells (PSCs) are the key cells of fibrosis. As an extracellular matrix (ECM) glycoprotein, cartilage oligomeric matrix protein (COMP) is critical for collagen assembly and ECM stability and recent studies showed that COMP exert promoting fibrosis effect in the skin, lungs and liver. However, the role of COMP in activation of PSCs and pancreatic fibrosis remain unclear. We aimed to investigate the role and specific mechanisms of COMP in regulating the profibrotic phenotype of PSCs and pancreatic fibrosis. METHODS: ELISA method was used to determine serum COMP in patients with CP. Mice model of CP was established by repeated intraperitoneal injection of cerulein and pancreatic fibrosis was evaluated by Hematoxylin-Eosin staining (H&E) and Sirius red staining. Immunohistochemical staining was used to detect the expression changes of COMP and fibrosis marker such as α-SMA and Fibronectin in pancreatic tissue of mice. Cell Counting Kit-8, Wound Healing and Transwell assessed the proliferation and migration of human pancreatic stellate cells (HPSCs). Western blotting, qRT-PCR and immunofluorescence staining were performed to detect the expression of fibrosis marker, AKT and MAPK family proteins in HPSCs. RNA-seq omics analysis as well as small interfering RNA of COMP, recombinant human COMP (rCOMP), MEK inhibitors and PI3K inhibitors were used to study the effect and mechanism of COMP on activation of HPSCs. RESULTS: ELISA showed that the expression of COMP significantly increased in the serum of CP patients. H&E and Sirius red staining analysis showed that there was a large amount of collagen deposition in the mice in the CP model group and high expression of COMP, α-SMA, Fibronectin and Vimentin were observed in fibrotic tissues. TGF-ß1 stimulates the activation of HPSCs and increases the expression of COMP. Knockdown of COMP inhibited proliferation and migration of HPSCs. Further, RNA-seq omics analysis and validation experiments in vitro showed that rCOMP could significantly promote the proliferation and activation of HPSCs, which may be due to promoting the phosphorylation of ERK and AKT through membrane protein receptor CD36. rCOMP simultaneously increased the expression of α-SMA, Fibronectin and Collagen I in HPSCs. CONCLUSION: In conclusion, this study showed that COMP was up-regulated in CP fibrotic tissues and COMP induced the activation, proliferation and migration of PSCs through the CD36-ERK/AKT signaling pathway. COMP may be a potential therapeutic candidate for the treatment of CP. Interfering with the expression of COMP or the communication between COMP and CD36 on PSCs may be the next direction for therapeutic research.


Assuntos
Pancreatopatias , Pancreatite Crônica , Animais , Humanos , Camundongos , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/farmacologia , Proteína de Matriz Oligomérica de Cartilagem/uso terapêutico , Células Cultivadas , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Fibrose , Pancreatopatias/metabolismo , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
13.
Orphanet J Rare Dis ; 19(1): 116, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475860

RESUMO

BACKGROUND: Very little is known about the characteristics of echocardiographic abnormalities and joint hypermobility in Chinese patients with osteogenesis imperfecta (OI). The aim of our study was to investigate the characteristics, prevalence and correlation of echocardiographic abnormalities and joint hypermobility in Chinese patients with OI. METHODS: A cross-sectional comparative study was conducted in pediatric and adult OI patients who were matched in age and sex with healthy controls. Transthoracic echocardiography was performed in all patients and controls, and parameters were indexed for body surface area (BSA). The Beighton score was used to evaluate the degree of joint hypermobility. RESULTS: A total of 48 patients with OI (25 juveniles and 23 adults) and 129 age- and sex-matched healthy controls (79 juveniles and 50 adults) were studied. Four genes (COL1A1, COL1A2, IFITM5, and WNT1) and 39 different mutation loci were identified in our study. Mild valvular regurgitation was the most common cardiac abnormality: mild mitral and tricuspid regurgitation was found in 12% and 36% of pediatric OI patients, respectively; among 23 OI adults, 13% and 17% of patients had mild mitral and tricuspid regurgitation, respectively, and 4% had mild aortic regurgitation. In multiple regression analysis, OI was the key predictor of left atrium diameter (LAD) (ß=-3.670, P < 0.001) and fractional shortening (FS) (ß = 3.005, P = 0.037) in juveniles, whereas for adults, OI was a significant predictor of LAD (ß=-3.621, P < 0.001) and left ventricular mass (LVM) (ß = 58.928, P < 0.001). The percentages of generalized joint hypermobility in OI juveniles and adults were 56% and 20%, respectively. Additionally, only in the OI juvenile group did the results of the Mann‒Whitney U test show that the degree of joint hypermobility was significantly different between the echocardiographic normal and abnormal groups (P = 0.004). CONCLUSIONS: Mild valvular regurgitation was the most common cardiac abnormality in both OI juveniles and adults. Compared with OI adults, OI juveniles had more prevalent and wider joint hypermobility. Echocardiographic abnormalities may imply that the impairment of type I collagen is more serious in OI. Baseline echocardiography should be performed in OI patients as early as possible.


Assuntos
Cardiopatias Congênitas , Instabilidade Articular , Osteogênese Imperfeita , Insuficiência da Valva Tricúspide , Adulto , Humanos , Criança , Estudos Transversais , Colágeno Tipo I/genética , Ecocardiografia , Mutação , China
14.
Stem Cell Res Ther ; 15(1): 75, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38475906

RESUMO

BACKGROUND: Annulus fibrosis (AF) defects have been identified as the primary cause of disc herniation relapse and subsequent disc degeneration following discectomy. Stem cell-based tissue engineering offers a promising approach for structural repair. Menstrual blood-derived mesenchymal stem cells (MenSCs), a type of adult stem cell, have gained attention as an appealing source for clinical applications due to their potential for structure regeneration, with ease of acquisition and regardless of ethical issues. METHODS: The differential potential of MenSCs cocultured with AF cells was examined by the expression of collagen I, SCX, and CD146 using immunofluorescence. Western blot and ELISA were used to examine the expression of TGF-ß and IGF-I in coculture system. An AF defect animal model was established in tail disc of Sprague-Dawley rats (males, 8 weeks old). An injectable gel containing MenSCs (about 1*106/ml) was fabricated and transplanted into the AF defects immediately after the animal model establishment, to evaluate its repairment properties. Disc degeneration was assessed via magnetic resonance (MR) imaging and histological staining. Immunohistochemical analysis was performed to assess the expression of aggrecan, MMP13, TGF-ß and IGF-I in discs with different treatments. Apoptosis in the discs was evaluated using TUNEL, caspase3, and caspase 8 immunofluorescence staining. RESULTS: Coculturing MenSCs with AF cells demonstrated ability to express collagen I and biomarkers of AF cells. Moreover, the coculture system presented upregulation of the growth factors TGF-ß and IGF-I. After 12 weeks, discs treated with MenSCs gel exhibited significantly lower Pffirrmann scores (2.29 ± 0.18), compared to discs treated with MenSCs (3.43 ± 0.37, p < 0.05) or gel (3.71 ± 0.29, p < 0.01) alone. There is significant higher MR index in disc treated with MenSCs gel than that treated with MenSCs (0.51 ± 0.05 vs. 0.24 ± 0.04, p < 0.01) or gel (0.51 ± 0.05 vs. 0.26 ± 0.06, p < 0.01) alone. Additionally, MenSCs gel demonstrated preservation of the structure of degenerated discs, as indicated by histological scoring (5.43 ± 0.43 vs. 9.71 ± 1.04 in MenSCs group and 10.86 ± 0.63 in gel group, both p < 0.01), increased aggrecan expression, and decreased MMP13 expression in vivo. Furthermore, the percentage of TUNEL and caspase 3-positive cells in the disc treated with MenSCs Gel was significantly lower than those treated with gel alone and MenSCs alone. The expression of TGF-ß and IGF-I was higher in discs treated with MenSCs gel or MenSCs alone than in those treated with gel alone. CONCLUSION: MenSCs embedded in collagen I gel has the potential to preserve the disc structure and prevent disc degeneration after discectomy, which was probably attributed to the paracrine of growth factors of MenSCs.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Células-Tronco Mesenquimais , Masculino , Ratos , Animais , Degeneração do Disco Intervertebral/patologia , Disco Intervertebral/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Metaloproteinase 13 da Matriz , Agrecanas/metabolismo , Ratos Sprague-Dawley , Discotomia , Células-Tronco Mesenquimais/metabolismo , Colágeno Tipo I/metabolismo , Fator de Crescimento Transformador beta/metabolismo
15.
Differentiation ; 136: 100757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437764

RESUMO

Collagen is a highly abundant protein in the extracellular matrix of humans and mammals, and it plays a critical role in maintaining the body's structural integrity. Type I collagen is the most prevalent collagen type and is essential for the structural integrity of various tissues. It is present in nearly all connective tissues and is the main constituent of the interstitial matrix. Mutations that affect collagen fiber formation, structure, and function can result in various bone pathologies, underscoring the significance of collagen in sustaining healthy bone tissue. Studies on type 1 collagen have revealed that mutations in its encoding gene can lead to diverse bone diseases, such as osteogenesis imperfecta, a disorder characterized by fragile bones that are susceptible to fractures. Knowledge of collagen's molecular structure, synthesis, assembly, and breakdown is vital for comprehending embryonic and foetal development and several aspects of human physiology. In this review, we summarize the structure, molecular biology of type 1 collagen, its biomineralization and pathologies affecting bone.


Assuntos
Colágeno Tipo I , Osteogênese Imperfeita , Animais , Humanos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Calcificação Fisiológica/genética , Colágeno/metabolismo , Osteogênese Imperfeita/genética , Osso e Ossos , Mutação , Mamíferos/metabolismo
16.
J Dent ; 143: 104905, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428716

RESUMO

OBJECTIVE: To prepare a bioactive dentin adhesive and investigate its effect on promoting bonding durability of dentin. METHODS: The mineralization of the bioactive glass with high phosphorus (10.8 mol% P2O5-54.2 mol% SiO2-35 mol% CaO, named PSC) and its ability to induce type I collagen mineralization were observed by SEM and TEM. The Control-Bond and the bioactive dentin adhesive containing 20 wt% PSC particles (PSC-Bond) were prepared, and their degree of conversion (DC), microtensile bond strength (µTBS), film thickness and mineralization performance were evaluated. To evaluate the bonding durability, dentin bonding samples were prepared by Control-Bond and PSC-Bond, and mineralizated in simulated body fluid for 24 h, 3 months, and 6 months. Then, the long-term bond strength and microleakage at the adhesive interface of dentin bonding samples were evaluated by microtensile testing and semiquantitative ELIASA respectively. RESULTS: The PSC showed superior mineralization at 24 h and induced type I collagen mineralization to some extent under weakly alkaline conditions. For PSC-Bond, DC was 62.65 ± 1.20%, µTBS was 39.25 ± 4.24 MPa and film thickness was 17.00 ± 2.61 µm. PSC-Bond also formed hydroxyapatite and maintained good mineralization at the bonding interface. At 24 h, no significant differences in µTBS and interface microleakage were observed between the Control-Bond and PSC-Bond groups. After 6 months of aging, the µTBS was significantly higher and the interface microleakage was significantly lower of PSC-Bond group than those of Control-Bond group. SIGNIFICANCE: PSC-Bond maintained bond strength stability and reduced interface microleakage to some extent, possibly reducing the occurrence of secondary caries, while maintaining long-term effectiveness of adhesive restorations.


Assuntos
Colagem Dentária , Cimentos Dentários , Cimentos Dentários/química , Adesivos Dentinários/química , Cimentos de Resina/química , Colágeno Tipo I , Dióxido de Silício/farmacologia , Dentina , Resistência à Tração , Teste de Materiais , Resinas Compostas/química
17.
J Mater Chem B ; 12(13): 3249-3261, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38466580

RESUMO

Over the past few decades, the critical role played by cellular contractility associated mechanotransduction in the regulation of cell functions has been revealed. In this case, numerous biomaterials have been chemically or structurally designed to manipulate cell behaviors through the regulation of cellular contractility. In particular, adhesive proteins including fibronectin, poly-L-lysine and collagen type I have been widely applied in various biomaterials to improve cell adhesion. Therefore, clarifying the effects of adhesive proteins on cellular contractility has been valuable for the development of biomaterial design. In this study, reference-free traction force microscopy with a well-organized microdot array was designed and prepared to investigate the relationship between adhesive proteins, cellular contractility, and mechanotransduction. The results showed that fibronectin and collagen type I were able to promote the assembly of focal adhesions and further enhance cellular contraction and YAP activity. In contrast, although poly-L-lysine supported cell spreading and elongation, it was inefficient at inducing cell contractility and activating YAP. Additionally, compared with cellular morphogenesis, cellular contraction was essential for YAP activation.


Assuntos
Fibronectinas , Mecanotransdução Celular , Fibronectinas/metabolismo , Mecanotransdução Celular/fisiologia , Microscopia de Força Atômica , Colágeno Tipo I , Polilisina , Tração , Adesão Celular , Materiais Biocompatíveis
18.
FASEB J ; 38(6): e23561, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38530321

RESUMO

Hypertrophic scarring is a major source of morbidity. Sex hormones are not classically considered modulators of scarring. However, based on increased frequency of hypertrophic scarring in patients on testosterone, we hypothesized that androgenic steroids induce abnormal scarring and developed a preclinical porcine model to explore these effects. Mini-swine underwent castration, received no testosterone (noT) or biweekly testosterone therapy (+T), and underwent excisional wounding. To create a delayed wound healing model, a subset of wounds were re-excised at 2 weeks. Scars from postoperative day 42 (POD42) and delayed wounds (POD28) were harvested 6 weeks after initial wounding for analysis via histology, bulk RNA-seq, and mechanical testing. Histologic analysis of scars from +T animals showed increased mean fibrosis area (16 mm2noT, 28 mm2+T; p = .007) and thickness (0.246 mm2noT, 0.406 mm2+T; p < .001) compared to noT. XX+T and XY+T scars had greater tensile burst strength (p = .024 and p = .013, respectively) compared to noT swine. Color deconvolution analysis revealed greater deposition of type I and type III collagen as well as increased collagen type I:III ratio in +T scars. Dermatopathologist histology scoring showed that +T exposure was associated with worse overall scarring (p < .05). Gene ontology analysis found that testosterone exposure was associated with upregulation of cellular metabolism and immune response gene sets, while testosterone upregulated pathways related to keratinization and laminin formation on pathway analysis. In conclusion, we developed a preclinical porcine model to study the effects of the sex hormone testosterone on scarring. Testosterone induces increased scar tissue deposition and appears to increase physical strength of scars via supraphysiologic deposition of collagen and other ECM factors. The increased burst strength seen in both XX and XY animals suggests that hormone administration has a strong influence on scar mechanical properties independent of chromosomal sex. Anti-androgen topical therapies may be a promising future area of research.


Assuntos
Cicatriz Hipertrófica , Humanos , Suínos , Animais , Matriz Extracelular , Testosterona/farmacologia , Colágeno Tipo I , Laminina
19.
Cells ; 13(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38534372

RESUMO

Heat shock protein 47 (HSP47), also known as SERPINH1, functions as a collagen-specific molecular chaperone protein essential for the formation and stabilization of the collagen triple helix. Here, we delved into the regulatory pathways governed by HSP47, shedding light on collagen homeostasis. Our investigation revealed a significant reduction in HSP47 mRNA levels in the skin tissue of older mice as compared to their younger counterparts. The augmented expression of HSP47 employing lentivirus infection in fibroblasts resulted in an increased secretion of type I collagen. Intriguingly, the elevated expression of HSP47 in fibroblasts correlated with increased protein and mRNA levels of type I collagen. The exposure of fibroblasts to IRE1α RNase inhibitors resulted in the reduced manifestation of HSP47-induced type I collagen secretion and expression. Notably, HSP47-overexpressing fibroblasts exhibited increased XBP1 mRNA splicing. The overexpression of HSP47 or spliced XBP1 facilitated the nuclear translocation of ß-catenin and transactivated a reporter harboring TCF binding sites on the promoter. Furthermore, the overexpression of HSP47 or spliced XBP1 or the augmentation of nuclear ß-catenin through Wnt3a induced the expression of type I collagen. Our findings substantiate that HSP47 enhances type I collagen expression and secretion in fibroblasts by orchestrating a mechanism that involves an increase in nuclear ß-catenin through IRE1α activation and XBP1 splicing. This study therefore presents potential avenues for an anti-skin-aging strategy targeting HSP47-mediated processes.


Assuntos
Colágeno Tipo I , Proteínas de Choque Térmico HSP47 , Camundongos , Animais , Colágeno Tipo I/metabolismo , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP47/metabolismo , Endorribonucleases/metabolismo , beta Catenina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/metabolismo
20.
BMC Oral Health ; 24(1): 376, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519884

RESUMO

Dental fluorosis (DF) is a prevalent developmental defect of tooth enamel caused by exposure to excessive fluoride, with the severity dependent on various factors. This study aimed to investigate the association between DF and a specific genetic polymorphism (rs412777) in the COL1A2 gene among a Tunisian population. A case-control study was conducted from July to November 2022, involving a total of 95 participants including 51 cases and 44 controls. Dental examinations and genetic analysis were performed to assess the relationship between the COL1A2 gene polymorphism and DF.The results of allelic distribution revealed that A allele carriers were significantly protected against (DF) when compared to those with the C allele (C vs. A, p = 0.001; OR = 0.375 (0.207-0.672)). This suggests a strong correlation between the presence of the C allele and the risk of developing DF. Additionally, significant association between the CC genotype of rs412777 and an increased risk of DF was found under both codominant and dominant genetic models (P = 0.002 and P < 0.001 respectively).The findings suggest that genetic predisposition plays a relevant role in the development of DF. Further research is needed to explore the potential use of genetic markers for DF and their implications for public health. This study provides the first insights into the genetic factors associated with DF in the Tunisian population, contributing to our understanding of this prevalent dental condition.


Assuntos
Fluorose Dentária , Humanos , Fluorose Dentária/genética , Estudos de Casos e Controles , Polimorfismo Genético/genética , Genótipo , Fluoretos , Colágeno Tipo I/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...